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Approximation orders of shift-invariant subspaces of L,,(R"), 2 < p < w, generated
by the shifts of one compactly supported function are considered. In that course,
explicit approximation maps are constructed. The approach avoids quasi-inter-
polation and applies to stationary and non-stationary refinements. The general
results are specialized to box spline spaces, to obtain new results on their
approximation orders. < 1995 Academic Press, Inc

1. INTRODUCTION

Let S be a function space consisting of complex (or real) valued func-
tions defined on RY. We say that S is shift-invariant (S, for short) if § is
invariant under all integer translations (referred to hereafter as shifts), ie..

YaeZY (feS< f(-—a)eS§). (1.1)
In this paper we consider SI spaces which are subspaces of
Lp = L[}( R‘I)s

for some 2 < p < oo. The simplest type of shift-invariant spaces is the PSI
space (P for “principal”) which is the case when S is closed (usually in the
underlying p-norm, but sometimes in a weaker topology) and the shifts of
a single function ¢ ( =the generator) are fundamental in S. Approximation
from PSI and other shift-invariant spaces is pertinent to the theory and
applications of several subareas of analysis, and in particular to Multivariate
Splines, Radial Basis Approximation, Wavelets, and Sampling Theory.

In many actual approximations, the SI space S is refined to yield another
approximating space S, with, presumably, better approximation properties.
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The standard (known as stationary) refinement is by scaling, that is, S, is
obtained by dilating the functions in S:

S,=0,S:={0,f:=f(-/h): [eS}.

Sometimes (cf. [DR]) it is necessary to refine S by means other than
dilation.

The basic way for measuring the approximation “power” of S is via the
tool of approximation orders. Roughly speaking, the collection of spaces
{S,} )0 is said to provide approximation order k >0, if, for all sufficiently
smooth f,

dist(f. S,) = O(h*).

Here, dist is measured by the relevant p-norm or one of its relatives (a
Sobolev norm, a local p-norm, etc.). For some time, the analysis of approx-
imation orders of PSI spaces was largely dominated by the Strang—Fix con-
ditions, [ SF]. These conditions assert that, if S is generated by a compactly
supported ¢, if $(0)#0, and if the scale {S,}, is stationary, then the
approximation orders provided by {S,}, are determined by the order of
the zero (5 has at each of 2z Z“\0. The standard method for converting the
information about these zeros into approximation order results is the poly-
nomial reproduction/quasi-interpolation argument, (cf. the book [C], the
survey [ B], and the references therein). However, several important PSI
spaces that were introduced and studied in recent years do not satisfy the
requirements imposed above on the PSI space. One difficulty arises in the
area of radial basis functions, since there the typical generator ¢ is not
compactly supported. A totally different difficulty arises in the area of box
splines: while the box spline is compactly supported, its corresponding
{S,}, is not a stationary one (unless the generator ¢ is a polynomial box
spline). The attempt to cover those cases by generalized quasi-interpolation
arguments led to some remarkable achievements, but did not solve the
problem in its entirety. In retrospect, it seems that the quasi-interpolation
approach fails to realize the approximation order of general PSI spaces, a
fortiori of general SI spaces.

New approaches that circumvent quasi-interpolation were recently
developed in [BR2] (p=oc) and [ BDRI1] (p=2). While the two methods
differ in the approximation scheme they employ as well as in their error
analysis, they both perform the entire error analysis on the Fourier domain,
hence, in turn, avoid the imposition of decay rates on the generator ¢. Also,
importantly, both characterizations do not require {S,}, to be stationary,
and, furthermore, [ BDR11] even dispenses with the regularity assumption
$(0) # 0. Extensive discussions of the various applications of the results of
[ BR2, BDRI1] to radial function approximation can be found in Section 3



40 AMOS RON

of [BR2] and [ R3], respectively. Further discussion of the literature can
be found in Subsection 3.2.

In the present paper, we revisit PSI spaces generated by compactly sup-
ported functions (such spaces were coined /ocal in [ BDR2]). Primarily, we
aim at establishing results on the approximation order of box spline spaces,
and providing explicit approximation schemes that realize that order. The
main findings here with respect to box spline spaces are as follows:

(a) We determine exactly (in Theorem 3.4) the approximation order
of box spline spaces in the L,-norm. In no norm has such a result been
known before, although, for p=oc, [ BR2] came very close to the mark.
We also show that no smooth function can be approximated any better
(cf. Theorem 3.7).

{b) We present (in Subsection 3.3) an explicit approximation scheme
in the form

Ix ) bl =) Na),
xe s
for a suitably chosen convolution operator J. We prove that the scheme
realizes the L.-approximation order, and, as a matter of fact, maintains the
same approximation order in L, -norms, 2 <p < oc (Theorem 3.13). The
results also apply to the L  -case, if a mild smoothness condition 1s
imposed on ¢ (pe A, with A the Wiener algebra).

(¢) We develop 4 new error analysis method which differs from the
two of [ BR2, BDRI1]. With the aid of that approach, we show that for
2 < p <« (with some additional smoothness conditions required of the box
spline ¢, in the p = oc case) the approximation scheme used provides simul-
taneous approximation to functions and their derivatives { Theorem 3.17).

Most of the analysis that is developed to deal with box spline spaces was
found to apply also to general local PSI spaces. Due to that reason, we
first present, in Section 2, results that concern approximation orders of
local PSI spaces, and only then apply these results, in Section 3, to the box
spline case. Most of the proofs are collected in Section 4.

Soon after completing the present paper, I received a preprint of Kyriazis’
paper [ K]. The paper [ K] deals with problems similar to those considered
in the present paper, and to a limited extent employs similar analysis
(primarily, both papers invoke the approximation scheme of [ BR2], and
also both papers apply the Hausdorff-Young theorem). However, the foci
of the two papers seems to be different, hence they are quite complemen-
tary one to another. Kyriazis [ K] focuses on stationary refinements and
attempts to impose as mild as possible decay conditions on the generator ¢.
Therefore, a substantial effort is devoted there to proving that various
constructed approximants are indeed taken from the underlying PSI space.
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The paper [K] succeeds in providing satisfactory results also to L,
norms where p < 2, its class of smooth functions is larger than here, and it
establishes Strang-Fix conditions similar to those derived in [ BDR1]. The
present paper focuses on box spline spaces, hence avoids on the one hand
questions of decay rates of the generator, but needs on the other hand to
deal with non-stationary refinements. Also, we present here results on
simultaneous approximation to function and derivatives, a topic which was
not considered in [K], and, finally, our results apply to p= o, as well
([ K] relies on the Michlin multiplier theorem, hence deals with p < ).

Notations. We have already used the notation o, for the dilation
operator

ay: fr= 1R,

Norms of vectors x e R are denoted by |x|,, namely,

po
o Lip
]x’p :=< Z )‘\.jl I’> *
i=1
with the default notation |x{:=|x|,. The function
X X,

which is used extensively in the paper, is denoted by (the essentially self-
understood notation)

I-.
For f}e C¥, the notation e, stands for the exponential function

ey e,

Unless otherwise stated, all domains of functions in this paper are taken to
be R Thus, L,=L,(R"), ¥ =9"(R’) (the space of all d-dimensional
complex-valued tempered distributions), W = Wi(R“) (the Sobolev space
of all functions whose derivatives up to order k are in L), etc. We also
abbreviate

H,f‘“p = Hf“l,,
2. APPROXIMATION FROM LocaL PSI SPAcCES

Our model is as follows. We are given an indexed set @ :={¢,},cL,.
The locality assumption usually means that each ¢, is supported in some



42 AMOS RON

bounded, h-independent domain £, but, while such an assumption holds
indeed in the box spline case, we do not need it here. We only assume that
each ¢, is compactly supported. Regardless of the value of p, we define, for
any compactly supported ¢, the PSI space S(¢) to be the infinite span of
the shifts of ¢:

S(¢):={ T (- —a) c(a)}.

xezd

The convergence of the infinite sums can be taken pointwise, since the sum
is actually finite on compact domains. No a priori growth condition is
imposed on the coefficients {c¢(«)} . s Although this definition slightly
deviates from the one given in the Introduction {our space is not a sub-
space of L,), that difference would not matter in subsequent discussions.
The scale of spaces {S,}, is obtained by dilating the PSI spaces S(¢,),

Sy:= Lo, f=f-/h): fe S},

and the approximation orders provided by {¢,}, are concerned with the rate
of decay of

dist, (£, S,) :=inf{| f—sll,:5€S,} (2.1)

as h — 0. More precisely, we say that {¢,} , provides approximation order k,
if for every f in some smoothness space V,, and small enough 4,

dist,( £, S,) <const h* | £, ..

with || /), , some norm of . The scale {S,}, is stationary if ¢, = ¢, for all
h, h'. In such a case, {S,}, are all dilates of one basic PSI space S(¢).

The space V,, of “smooth enough” test functions is defined as follows.
For two conjugate exponents 1 <g<p< w, and k=0,

Vi =L W o = DU+ 11 ey < 00} (2.2)

Note that, for an integer k, the Hausdorff~-Young Theorem implies that
V,« is continuously embedded into the Sobolev space Wj;.

Given feV,,, we seek an approximant for f from S,. Since S, is the
h-dilate of S(¢,), we can define the approximant for f in terms of an
element 4,(f)eS(¢,), ie., approximate f by a,(A,(f)). 4,(f) is, neces-
sarily, a (possibly infinite) linear combination of the shifts of ¢,. We obtain

the coefficients in this combination as the restriction to Z“ of a continuous
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(in fact, entire) function J,( /). In summary, we approximate f by a, 4,( f).
where

A )= 3 dul- —a) S SN 2). (2.3)

xezd

Thus, the particular details of our approximation scheme rely on the choice
of the maps

S J ).

As it turns out, the results below on approximation orders require four
conditions of the maps {J,},, and any collection that satisfies these four
properties will do here. Three of these conditions are indepedent of the
specific approximation order we are after, and are listed now.

(2.4) Conditions required from the maps {J,},. (a) Each J, is a
dilation followed by convolution, that is,

TS =T, o). (25)

(b) Each T, is a function supported in some A-independent origin-
neighborhood B[ —n..n]"

(c) For some hy>0, {T}}, ., are uniformly bounded on B (hence
on RY).

Note that we do not impose smoothness conditions on T, and therefore
J, needs not map L, into itself. However, {g,J,}, are uniformly bounded
endomorphisms on each V, .

THEOREM 2.6. Let 2<p < oo be given and let q be its conjugate expo-
nent. For k>0, let V,, be as in (2.2). Let {¢,}, be a family of compactly
supported functions, and B an origin-neighborhood. Assume that the
collection of sequences

Men: (20ZN0)3 B> Wh+ 1D dal- + Bl o <o,

lies in 1,(2nZ9\0) and is bounded there. Suppose that {J,},.,, satisfy
conditions (a), {b), and (c) of (2.4) (with respect to the present B), and, in
addition,

sup [(h+ 1) (1 =dn T, m < . (d)

ho<hy

Let A, be defined by (2.3). Then

1f =l AW 1 ey SconstB* [ fll, xSV, 4.
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Proof. See Subsection 4.1.

We remark that the proof of Theorem 2.6 provides the following bound
on the error,

1 =0 Ad N,
< const A* 1A T, oy g 4l I 27 £4\0)

FHh+1-D) (=G, Tl 1, s+ o(1)), (2.7)

with the o(1) expression always bounded by 1, decays to 0 with A, and
otherwise depends only on f, p, k, and B, and with const depending only
on p. Therefore, assuming that B is fixed, one might try to choose J, such
that the sum |7, LI It 2 79\0) +ith+1-D M1 =0, Ti)lr, e 18
minimized.

A natural choice for J, is given by 7, := ¥/, with x a characteristic
function of some O-neighbourhood B. In this case (h+[-|) *(1—¢,T,)
vanishes on B, hence condition (d) in the theorem trivially holds. The only
condition that needs be checked then is condition (c), viz., the uniform
boundedness of {7}, which amounts to the uniform boundeness of 1/4,.
Hence we have:

CoROLLARY 2.8, Assume that the Fourier transforms of the family
@ = {p,} - of compactly supported functions are uniformly bounded away
Srom O on some origin-neighborhood B. Then, for every 2 <p <o, every
k>0, and h<h,.

. kg
dlSt,;(.ﬁ Sy)<const i 11 £, . Cliag all,

(2 &

avgy T o(1)), Vfe V,:,/n

with {my_,} defined as in Theorem 2.6, with const independent of k and f,
the o(l) expression bounded by 1, and with g the conjugate of p. Hence,
{@,}, provides an approximation order no smaller than k whenever
) ,M,,Ed\o,} , are uniformly bounded for sufficiently small h.

In order for this corollary to be useful in the derivation of approximation
orders, we need to find conditions which guarantee the boundedness of
the sequences {m, ,},. In the next section, we will see how this is done in
the case of box splines. At present, we note that the essential part in the
boundedness assumption on {m, ,}, is the pointwise boundedness, that is,
for every €27 Z\0 the function

hes [+ 1) “ G-+ B, cmn h<hy

should be bounded, and the bound should be uniform in f. The fact that
we assume more than that pointwise boundedness in the theorem is due to
the technical details of the proof, and, in most practical examples is
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translated to smoothness conditions on {¢,},. Note also that in the
stationary case, ¢, does not change with /4, and the pointwise boundedness
condition thus can be easily seen to be equivalent to ¢ having a k-fold zero
at each of fe2nZ\0.

Under additional smoothness conditions on {¢,},. the approximants
{44/}, can be shown to approximate f in Sobolev norms as well. We
mention that such results (concerning simultaneous approximation from SI
spaces) are a rarity, especially since there is no standard way to derive
them from quasi-interpolation arguments. The most notable exception is
[SF] that states such results in the L,- and L -norm (for the stationary
case), and proves the L,-statement.

THEOREM 29. Adopting the notations and assumptions of Theorem 2.6,
assume, in addition, that for some positive integer r <k, the sequences

rn:»,/,: (and\o)aﬂ'_"’ lﬂ'r “(h_i' l")ik ¢h( : +ﬁ)“l,,(ﬁ)- h <h()
lie in I (2n Z9\0) and are uniformly bounded there. Then,

Lf— ol Al D]z <const,,, | fll,u k" "

Proof. See Subsection 4.1.

3. APPROXIMATION FROM Box SPLINE SPACES

3.1. Statement of the Problem and its L,-Solution

To define a box spline, we let = be a rational matrix of d rows which is
also considered as the multiset of its columns {&} .. -, with each column
fe E (referred to sometimes as “a direction”) assumed to be a non-zero
vector. The matrix Z is augmented by a row vector /. =4i-€C%, and the
resulted matrix, denoted by (Z, 4), is used to define the box spline

M = M-, whose Fourier transform is
, we R’ (3.1)

In general M is a compactly supported measure defined on R but upon
assuming that

rank £=d (

"
[
=

640 K1 1eg
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(as we always do hereafter), the box spline is a bounded compactly supported
piecewise-exponential-polynomial function supported in the zonotope

25;={Z téé:t:e[O..l]}. (3.3)

ex

Polynomial box splines correspond to the choice A = 0. Exponential B-splines
are obtained when d=1 and £ =1, all &£ Tensor splines are obtained when-
ever all the directions are standard unit vectors. The box spline is positive
in the interior of Zz whenever 4 is real-valued.

We now define the scale {.S,}, of box spline spaces. For this, we fix M
(ie., fix = and 4), and define, for a given refinement parameter i >0, the
box spline M, as

M, =M_,..
The rest of the definition is as in the Introduction, 1e., S, :=a,S(M,). Our
space of “test functions” remains the space V, , defined in (2.2).

Since the ladder of spaces {S,}, is determined as soon as M is chosen
(in affect, as soon as £ and A are chosen), we refer to the relevant
approximation orders as provided by M, rather than “provided by {M,}.”
Note that each S, is “spanned” by the 4Z“shifts of the dilated function
o,M,. Furthermore, in case A=0, M, =M, all A, and the scale {S,},
becomes stationary. The motivation behind the particular definition of S,
in the non-stationary case, is that, while S, becomes invariant under finer
and finer shifts as /i — 0, the functions in S, are always piecewise in some
finite-dimensional A-independent space .# (of exponential-polynomials ).

We have seen in the last section that approximation orders from PSI
spaces can be understood in terms of the behaviour of the various
generators around 27 Z“\0. In the box spline case, however, such results
cannot be considered as satisfactory: the immediately available information
on the box spline is the matrix (=, 1), and therefore we wish to characterize
the approximation order of box spline spaces in those terms; that is, given
k>0, we need to find all (=, A1) whose corresponding box spline M,
provides an approximation order .

For the L,-norm, we provide in this paper the following complete
answer to the above problem.

THEOREM 3.4. The L,-approximation order provided by the box spline
M, is the number

K(E):=min{ #K,: pe2nz'\0}, (3.5)
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with
Ky, =KyZ):={¢eZ: ¢ fe2nZ\0}. (3.6)
In particular, the approximation order is independent of .

Proof. See Subsection 4.3.

Note that for p =2 and integer k, V, , = W%, and hence the above stated
approximation orders apply to the entire Sobolev space.

We will also show that no smooth function can be approximated to a
better rate. Precisely, we have:

THEOREM 3.7. Let {S,}, be the box spline space scale associated with a
box spline M- ;. Let k :=k'(Z), and let fe WA\{0}. Then for every sequence

dist,( £, S,,) #o(h?).
Proof. See Subsection 4.3.

The definition of £’(Z) 1s entirely in terms of the matrix = (i.e., does not
require any information on the underlying box spline M - ;), and, moreover
k'(Z) can be computed by a finite algorithm.

In the important special case when = is an integer matrix, Theorem 3.4
implies the following {(known) result:

COROLLARY 3.8. Assume that Z is an integer matrix. Then the L,-approxi-
mation order provided by the box spline M- ; is

K(Z):=min{ #X: X< =, rank(E\X) <d}. (3.9)

Here and hereafter, X == means that X is obtained from = by the
deletion of some columns, and # X is the number of columns in X.

Proof. In view of Theorem 34, it suffices to show that, for an integer
matrix =, A'(Z)=k(Z). Let £ Z. Since £ is an integer, £ - fe2nZ for every
Be2nZ“\0, hence K, of (3.6) can equivalently be defined here as

Ky={feZ:& f#0). (3.10)

Thus, (Z\Ky)” =0 and hence rank(Z\Kj) <d. This shows that k(Z) <
#K,, and consequently k(Z)<Kk'(Z). The reverse inequality does not
require the integrality of =, but only its rationality: assume that, for
some X< =, rank(=E\X)<d Since Z is a rational matrix, (Z\X) is rank-
deficient if and only if there exists a non-zero integer vector o perpendicular
to all £e(Z\X). In view of (3.6), we have K,,, < X, and hence k'(5) <
#K,., < #X It follows that A'(Z)<k(Z). |
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3.2. Further Literature Discussion

Now that the two numbers k(Z) and k’(Z) are introduced and their
connection to approximation orders is revealed, we are able to discuss the
history of the problem in further detail. In this regard, it seems instructive
to separate the discussion of the polynomial box spline case (A =0) from
the general exponential case. As mentioned before, the problem of the
former case is stationary, i.e., the spaces {S,} are all obtained from the
original space S(M) by dilation, and there is a variety of papers (including,
but not restricted to, [ SF, DMI, BJ, JL]) which treat such a setting for a
general compactly supported ¢, and links restrictive (hence stronger)
notions of approximation order (known as “controlled” and “local™) to the
polynomials in S(M). Further, more recently, it was shown in [R2]
(L, -norm) and [BDRI] (L,-norm) that whenever ¢ is compactly sup-
ported and g5(0) # 0 (which is certainly the case for a polynomial box spline
¢ = M) the polynomials in S(M) characterize the wnqualified approxima-
tion order (ie., the one defined and analyzed in the present paper). Thus,
at least in essence, the characterization of the approximation order
provided by a polynomial box spline amounts to the identification of the
polynomials in S{M). These polynomials were characterized by de Boor
and DeVore in [ BD] for the three-directional polynomial box spline (d =2,
2=0, Z"e{(1,0),(0, 1), (1, 1)}, V¢ € Z) which was also introduced there.
Polynomial box splines associated with a general integer = were introduced
and studied by the Boor and Héllig in [ BH ], with the identification of the
underlying polynomial space being among the highlights of that paper. The
abstract argument provided in [ BH] for the conversion of the knowledge
on the polynomials into lower bounds on the approximation order has
become a standard tool since then. Another proof of that result is included
in the subsequent work of Dahmen and Micchelli, [DM1]. The charac-
terization of the approximation order of a polynomial box spline associated
with a general = was only recently established in [ RS], where, again, the
main result is concerned with the identification of the polynomials in S(M).

Exponential box splines were introduced in [R1], and that paper also
contained the first result on their approximation order (showing that for
A< R and an integer Z, the approximation order in the L -norm is at
least 1). The first comprehensive discussion of approximation orders for
exponential box splines is found in [ DR], where, for general A but integer
Z, k(Z) was proved to be a lower bound on the L -approximation order.
(It was further shown there that the exponential reproduction argument
cannot provide better bounds.) The extension of these results to p < oo was
done by Lei and Jia in [L}], where, in addition, the local structure of the
spline space was used to provide matching upper bounds (thus, Corollary
3.8 is from [L1]).
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As already alluded to before, all the aforementioned results employed the
quasi-interpolation argument: first, the space H(A{) of all exponential-poly-
nomials (polynomials, if A =0) in (), S, is computed (either explicitly or as
the kernel of explicit differential operators) and then the approximation
power of H(M) around the origin is studied. This local approximation
order of H(M) is then converted to lower bounds on the approximation
orders via the quasi-interpolation argument (for this argument, in the
exponential case, see [ DR, LJ, R2, BR1, CW ]). However, in contrast with
the stationary case, there is no general theory that can be applied to the
exponential box spline to show that the lower bounds obtained by quasi-
interpolation are the best approximation orders. Indeed, we draw (in
Subsection 3.3) an example of a box spline M (necessarily with a non-
integer = and a non-zero A) such that &'(£)=1 while the corresponding
H(M) is trivial. We stress, however, that examples of this type are the
exception rather than the rule.

The only reference that we are aware of which treats the approximation
order provided by M-, for a rational = and general 4 is [ BR2], where
approximation in oc-norm is considered. The approach in that paper is
based on the theory for L -approximation orders developed there, a
theory which indeed circumvents quasi-interpolation. Theorem 3.13 is
similar to its L -counterpart from [ BR2], with one important difference:
while the results of [ BR2] require some minimal smoothness conditions of
the basis function under consideration (here the box spline M), hence
exclude box splines of low smoothness, no such exclusion exists in
L,-analogous results from [ BDR1]. We will elaborate on this point in the
next subsection, since Theorem 3.13 and its proof provide a better under-
standing of the nature of the smoothness restriction on M which was
required in [ BR2].

3.3. Approximation Orders of Box Spline Spaces in L,, p=2

In order to derive approximation orders for box spline spaces we invoke
Theorems 2.6 and 2.9. For that task we need first to find, for the given box
spline scale {¢,=M,},, corresponding maps {J,}, that satisfy the four
requirements specified in Theorem 2.6. Upon completing that part, we will
turn our attention to the main problem: identifying the largest integer k for

which the uniform boundedness of the sequences {m, ,}, is satisfied.

P

Lemma 3.11. Let {M,}, be any box spline scale, and let y be the charac-
teristic function of a O-neighborhood B. Then, for sufficiently small B, the
operators

e — —

Jp [ (XUI;/,f/Mh) Y

satisfy the four requirements of Theorem 2.6.
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Proof. J, certainly has the form required in (2.5), with 7, = ;(/E.
Condition (b) there can be satisfied by ensuring suppy<[—n..n]%
Congi\tion (d) (listed in Theorem 2.6) holds, since on B:=suppy,
1-M,T,=0. It remains to deal with condition (¢) of (2.4). For that,
we first observe that since

—— i i
M/,((U)= I—l’ V[ e'/l/lf*lg-(l))l dt,
=70

feZ
——

{M,}, converges uniformly on supp y to

1
1"[ J e(—:<~(ull (l’l,

cez”0

and this latter expression is bounded away from zero on, say, [ —xn..7]%

Thus, for sufficiently small A,, {T, = ){/]T/[:} # < are uniformly bounded, as
required.

In order to deal with the essential requirement of Theorem 2.6, that is,
the uniform boundedness in /(272 Z“\0) of the sequences {m, ,},, we will
prove the following:

LEMMA 3.12. Ler {M,}, be a box spline scale generated by M =M,
and let M be the corresponding pelynomial box spline, ie, Moy=M:,.
Given an origin-neighborhood B< [ —n..n]", define, as in Theorem 2.6,

M (2ZN0)3 B (h+ 1D My + B, o

If, for 1 <g< oo, }T/I\UeLq(R“), then, for small enough h,, the sequences
{men}n <y are uniformly bounded in 1 (2rZ9\0), for k :=k'(Z).

Proof. See Subsection 4.2.
With the aid of the two last lemmas, we establish the following theorem:

THEOREM 3.13. Let {M,}, be the box spline scale associated with the
box spline M := M - ;. Consider the approximation maps

Sxe,4,(f),
with
Ak = L Ml =) (),
where T

Tf) = (fiMy)
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and y is the support function of some origin-neighborhood B<[ —n..n]"
Then, for k=k'(Z), and 2 < p < o0,

| f—andn( )], <const, | £, b,

Sor every feV, , and every small enough h. The result is valid for p= oo, as
well, provided that Mye L,, with My= M -, the associated polynomial box
spline.

Proof. The claim of the present theorem with respect to p = oc follows
by an application of Lemma 3.12 and Lemma 3.11 to Theorem 2.6. The

—
same is true also for 2< p < oc, as soon as we show that for such p, M,
necessarily lies in L,. Since we assume that the rank condition

rank = =
holds, we can find a d x d invertible submatrix X < = Then
My=M,*M,,

with M, : =M, ,and M,=M _\,,,. The trivial bound

1
Je”*"“’dt <1, & weRd
[¢]

proves that e L, for any polynomial box spline ¢, and therefore Xfl\z elL,.

Consequently, it suffices to prove that M,e L, By applying a linear
change of variables, we may assume without loss that X is the identity

matrix, and thus M, becomes the tensor product of the univariate function

1 ) ] —e- iw
wn—»[ e dl =,
0 w
which lies in L (R) for ¢>1. It follows that X/I\,, hence also ]T/I\O is in
L(RY).

As mentioned in the Introduction, results similar to Theorem 3.4 were
derived in [ BR2], but with respect to the oc-norm. It is shown there that
the L -approximation order provided by M is always bounded above by
k'(Z), and this bound 1s proved there to be the exact approximation order
under the additional assumption

)y [T &8 " <o (3.14)

BeZiINO e ZZ-f#0
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In comparison, Theorem 3.13 requires the more verifiable condition
My e L, (which is shown to imply (3.14)). For example, the latter condition

1s satisfied whenever = can be partitioned into two matrices E=Xu Y
both of rank . Indeed, the full rank assumption on X and Y implies that
Myy, My, eL,, and hence their convolution product M-, is in the

algebra A :={f: feL,}.

ExampLE 3.15. Let ¢ =2. Then one easily checks that = can always be
partitioned into two matrices of rank 2 unless Z=Xu {&} where X is a
rank-1 matrix, or, in terms of &(Z) (cf. (3.9)) if and only if A(Z)=1. As
observed in the proof of Corollary 3.8, k'(Z) < k(Z), hence in such a case
K'(Z)e {0, 1}. Now, if k'(Z) =0, then, since the L, -approximation order is
proved in [BR2] to be bounded above by k'(Z), we conclude that M
provides approximation order 0. Therefore, the only bivariate box splines
whose oc-approximation order cannot be decided directly by the results
here are those associated with a matrix Z that satisfies K(Z)=k'(Z) = 1.

Next, we want to show, with the aid of an example, that the approxima-
tion order A’(Z) can exceed in times the local approximation order of the
space H(M) (cf. the third paragraph of Subsection 3.2):

ExaMpLE 3.16. Let d=2,

(12 0 12 1 12 1p2
“*(0 12 12 12 1 —1/2>’

and 4 yet to determined. It is easily verified that k'(Z)=1<k(Z) =5, and
hence, by Theorem 34, and in view of the previous example, the
L -approximation order provided by M ; is 1, for every 2<p < oc (and
regardless of the choice of A). The choice A =0 leads to a stationary situa-
tion, and the approximation order 1 must then imply that the shifts of M -,
partition the unity, as one can verify, with the aid of Poisson’s summation
formula, from the fact that

Ms,o(znﬂ)zéﬁ,m Bez”

On the other hand, for a generic choice of 4, H(M)={0}. This can be
proved as follows: if H(M) is non-trivial, then by Lemma 3.1 of [ BAR],
it contains an exponential @ e? . The frequency if of that exponential
must satisfy the following two conditions:

(a) Ay+iX76=0, for some 2x2 X< Z of rank 2; and

(b) M. ,(0+2rB)=0, fcZ*\0 (cf. [RI, Sect. 4] for (a) and [ BRI,
Sect. 2] for (b)).
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To see that the above (a) and (b) can hold only in exceptional circum-
stances, we proceed as follows: we fix the above =, X, and 4. This deter-
mines a unique # (see (a) above). We now try to define 4., £€ Z, so that
(b) above is valid. For that, one veriﬁes/ﬁﬁt (directly) that, regardless of
the specific choice of the 2x2 X< &, My, (0 + -) can vanish only on a
subset of some proper sublattice %y of 2nZ*. Selecting €2z Z*\{0} in the
complement of this sublattice, (b) above implies the existence of e Z\X
such that [} "%~ ?+/rgr =0 or, equivalently,

he—i& 0+ P)e2miZ\D.
This shows that one of 4., {e X must be chosen from the countable set
—i€-(0+2rnZ?) + 2ni Z, and therefore, generically, H(M) = {0}, as claimed.

Finally, we state our result concerning simultaneous approximation.

THEOREM 3.17. In the notations of Theorem 3.13, and for 2 <p < oo,

LS = o Al g <cOnSt,, B f

for every feV, ., every small enough h, and every integer r <k. The same
holds for p=oc, provided that M, and all its derivatives up to order r
inclusive lie in Wiener algebra A (or, equivalently, |-|\" Mye L,).

Proof. See Subsection 4.4.

4. PROOFS

4.1. Proofs of Theorems 2.6 and 2.9

The approximation maps {A4,}, that we employ are intimately related to
those used in [ BR2]. In fact, the latter, albeit a special case of the present
schemes, seem to be their most natural choice. In contrast, the error
analysis of [ BR2] cannot be adopted here: that analysis makes use of the
optimal approximation to the exponential functions

er x> e, e R

of [R2], and synthesizes those optimal approximations on the Fourier
domain to yield optimal approximation to other smooth functions.
However, when p < oc the above exponentials are not in L, any more,
hence the [BR2] approach cannot go through. Instead, we use here the
identity

Yovl-—agla)= ) i x(eyg), (4.1)

d

xeZ fe2nzd
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which is valid for any compactly supported distribution ¢ provided that g is
sufficiently smooth, say, g e C*(R%) (cf. Theorem 2.6 of [RS]). The con-
vergence of the right hand side of (4.1) is valid in the topology of tempered
distributions (and in most circumstances, in much stronger topologies),
provided that g and all its derivatives grow no faster than polynomially at oc.

Proof of Theorem 2.6. Fix 2<p< oo, and let feV,,. We try to
estimate the error

“f_ UI:(Ah(f))”p = h‘”[’ “al‘//lf_ A/y(f)“pa (42)

with the right hand side in (4.2) obtained from the left hand side by scaling.
Invoking (4.1} with respect to A,(f) (1e, with g:=J,(f) and ¥ :=¢,), we
obtain that

“Ut,uzf—A/.(f)“p = Hauhf“ o ) — Z B * (e/!‘]h(f))

| fe2rnz\0

Slogpf—du*x TN, + Z O * (e/f‘]h(f))

fe2rnziNO

P

Vi

(4.3)

We estimate each of the two terms in the last line of (4.3) with the aid of
the Hausdorff-Young inequality,

A, <comst, | fl,, lp+1l/g=1, (4.4)

valid for 2 < p < oo, provided that fe L (RY).

We first estimate in the proposition below the second term in the second
line of (4.3). For later use, we derive that estimate in a slightly more
general setup than needed here.

PROPOSITION 4.5. Let w be some sequence defined on 2nZ4\0 and having
(at most) polynomial growth. Then, in the notations of Theorem 2.6, and
under the assumptions there,

htip |

Z w(p) g, x(egJu(f))

Be2rnzi\0

kg ,
P < const h H/ ”,7,/( H”’k,h " ” /q(and\o)'

Proof. There is nothing to prove in case | ;Wi 2.z¢00,= %
Otherwise, by (4.4) it suffices to bound

A

b

< Z “’<ﬁ>¢h*(%~’h(f))>

‘ fe2nZ4\0

gy
1

=hr |

Y =R I+ ) J : (46)

pe2nzN\0 g
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{The justification for the term-by-term application of the Fourier transform

is given in the sequel.) Substituting h=“f./h) T, for m (cf. (2.5)) we
obtain from (4.6) the equivalent expression

h—4

b Y w(=B -+ T+ )

Be2nZ4\0

(4.7)

g

Here, the infinite sum in the above expression trivially converges (since
supp T,c Bc [ —n..n]¥), and the limit is supported in (27Z“\0)+ B.
Also, since the weights {w(f)} are of polynomial growth, the convergence
holds in %'. In retrospect, this justifies the term-by-term application of the
Fourier transform in (4.6), as well as the changing of the order of summa-
tion and multiplication by ¢, in the display afterwards.

We fix x€27279\0, and compute that

g

b, Y w(=B -+ T +P)
fle2n29\0

= [w(a) $, /(- —a)/m) T =), 1 sy

<) 1T % gy [+ 1 DF O W+ 1D Gl + Y,

Lix+B)

= h' (o) | TN, oy 1+ 1-D5 S s
< 41D G+ 209, -

Summing over all x€22Z“\0 and using the uniform boundedness of { T}
we obtain the bound

q
h—d

b Y w(=p) BT+ )

Be2nz9\0

Ly RY)

< const A*¢ 10 (1 W] e zan0ys

and the required result follows. ||

In view of (4.2), (4.3), and the claim of the last proposition for the choice
w =1, the proof of Theorem 2.6 is reduced to the study of the first term on
second line of (4.3). Here we have, for some positive const,

const Hal@‘hf- ¢/l * ‘]h(.f)”p

<Nyt —uTi N,

< Hal‘r’hf(l _éh Th)“ Ly B) + ”JI/th qu[R"'\Bp (48>
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with the first inequality by (4.4} and the second equality because m =
T,o,,/ and T, is supported in B. Changing variables, the term

H(r/w,\fn 1w\ Can be bounded as

100 1 enm = N0 s
=h ”f“ LARIN B
<h= (L +e/hy I+ D5 F1 L sicmm)
=h R £ o(1),

with the o(1) expression uniformly bounded in 4 and fe V,,. As for the
other term in {4.8),

100 F =G4 T 1
<N+ 1D @i iy 1O+ D5 (U =G, T e

By assumption (d), [(A+-]) % (1 — (];I, Tl .. s is bounded independently
of &, while a change of variables yields

Hh+ 1D oS Mm=h " 1+ 11V 6,1
=h* (1 + |‘”ka1A,,(H,wm

S

Thus, we have shown that each of the two terms in the last line of (4.3) is
of order O(h*~“"), and the claim of Theorem 2.6 then follows. ||

Proof of Theorem 29. The proof of Theorem 2.9 closely follows that of
its special case, Theorem 2.6. We thus only outline the proof, emphasizing
parts of the proof that deviate from their counterparts in Theorem 2.6.

We let PeJl, be a homogeneous polynomial, and P(D) its associated
constant-coefficient differential operator. We want to establish the bound

[P(DY f =0, A )], <const i ~ 47| £ limy |l (4.9)

Such an estimate leads to the desired result, since we may range P over
some fixed homogeneous basis for /7,. Here, const should be independent
of 4 and f, but may depend on P, p, and r.

For the proof of (4.9}, we consider

P(DY( f—o,A,(f)=PD)f—h **7c,P(D) A,(f).
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By (4.1) (with y :=¢, and g :=J,(f)).

P(D) A,(f)=P(D) }: 9, * (egdul f))

pe2nzd

= 3 g x(P(DNeyJ ) (4.10)

L
pe2nzd
with the changing of order of summation and differentiation justified by
the ¥’-convergence of the sum. The term corresponding to =0 is
Gy *x (P(D) S (f))=h"*"¢, « J,(P(D)[). and we first estimate

P(D)f—o"](¢ll * JI)(P(D)_f))

Since feV,,, P(D)feV,, 4qep. and hence the proof of Theorem 2.6
yields that for small enough /1 we have

IP(D) f—0,(¢, * J(P(D) [ )], <const b~ {P(D) [l 1 yeur-

It remains to bound the expression

Z ¢, * P(D)((’/;Jh(f))-

pe2rnZI\0

Here, we fix f#0, and expand

X 1
P(D)(eﬂ-]h(f))= Z ;*'(D’(P)(D)((’/;) D*J,(f)

az O

and use summation by parts (allowed, since the range of « is actually finite
and since for any fixed «, the Fourier transform of the various f-summands
have pairwise disjoint supports) followed by the triangle inequality to
estimate the norm of that part as

” Y P(Di(c/;J,,(f))”

pe2n o ip

1
1 H Z (D*P)if}) ¢, * ((’//(Di-]/,(f)))

1;0“! ife 2 79\0 »
h\’h )

=Y H Y. AD*PYIB) b, * (s, (D)) (4.11)
a'

x=0 todife2n7NO r
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Invoking Proposition 4.5 with w(f):=w_(f):=(D*P)iff) (and with f, k
replaced by D*f and k — |a},, respectively), we obtain that

Il
e 2 (DPYip) by * (es (D))

fe2nZ\0

rd

=[S B B e D)
pe2rz\0 dp
< const A* 1D Nk (g 1120 sl (22 29\0)- (4.12)

Since (1) the actual range of a in (4.11) is finite (|a|; <deg P), (ii)
DNk ey <INk and (iii) [(D*P)(if)] < const [#|", we derive from
(4.11) and {4.12) the inequality

n

Z ¢/.*P(D)("/x-/n(f))

pe2nzho

from which (4.9) follows. ]

< const hk“f”,:.k 2 4l I 2r 29\0) 5
1)

42. Proof of Lemma 3.12
Given fe2rnZ“\0, our first goal is to estimate [E{w + B), for small w.

T
Initially, this is done without using the assumption M, e L,. We consider,
one by one, the factors

1
“ Ui — 5 (w4 P01 gy (4.13)
]

that form |Xl\,,|. For this, fixing f € 2z Z“\0, we partition = according to the
behaviour of their corresponding factors into three groups: the first of
which is K, (cf. (3.6)) and the other two are defined as

L,={leZ:¢ f¢2nZ},
Oy:={lecZ:¢- =0}

Case 1. &€ 0. In this case, for sufficiently small 4, we have

-1
J etk i d(‘<2.
0

Case 1. ¢e L, Here we use the estimate

3
|hi:—i& - (o+ P

(4.14)

1
J\ (,4171‘.:7:':»(«&/1))1 df( <
0
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valid for all w and sufficiently small A The rationality of = implies the
existence of n € Z such that nZ is integral, and thus we have |- 8| = 2xr/n,
and (4.14) shows that for sufficiently small # and w

C
< —

11’

1
J €(M"f —i& - (w+ S d[
0

with ¢ depending only on Z.
Case 1II. {e K, In this final case, we write

oM =i (o4 B |

lhi;—ic - (w+ B

1
f e(/w.:—l;-(w#»ﬂ))! dt
0

|€h}1: — i __ 1‘

i —iZ (@ + P

{(4.15)

The denominator in the right hand side of (4.15) can be estimated as in the
previous case, while the numerator, for sufficiently small # and [w|, can be
bounded by c(h + |w|); hence we obtain in this case the estimate

t i e h+lw
} e(/m: &) dt ' ( [ ')
[}]

&1

<c

Combining these various estimates we obtain that, for » in some
h-independent neighborhood of the origin, for / sufficiently small and for
some (A, w, f)}-independent const,

M+ B) <comst(h + o) ** ] 1&-p

SeKpuly

<const(h+ || ] €817, (4.16)

SeKyuly

the second inequality since A'(Z) < # K, for every fe 2nZ“\0.
For later use, we record this intermediate estimate:

ProrosiTioN 4.17. Let {M,}, be a box spline scale associated with £
and 2. Then, for k :=k'(Z), for some origin-neighborhood B, for sufficiently
small h, and for some (h, fi)-independent const we have

e B) = 1h+1-D)"F My(- + ) . om<const ] 1B

SekKpguily
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To complete the proof of Lemma 3.12, we need to show that the
sequence

ep= 1 &R Be2rnzi\O

SeKguly

is in 7,(2zZ“\0), whenever ]T/I?e L,. A slightly more general assertion is
proved in the following proposition.

PropPoOSITION 4.18.  Assume that, for the polynomial box spline M, and
——
Jor some r =0, |-|" Mye L. Then

s T 18 <o, (4.19)

Be2nziNO feKywly

Proof of the Proposition. Choose weR“ that satisfies the following
conditions:
(a) For every (€=, & w is not 2x-rational.
(b) The sertes
Y B M+ B (4.20)

Be2n N0

converges.

(©) [E-(0+PI<2IE-pl, (B, fe2nZ’, f-&#0.

It is clear that the set of points w e R that violate (a) is of measure 0.
Also, because |-|” M, e L (RY), the series

Y o+ Bl I Molw+ B

Be2n7\0

converges ae. on [ —n..7}% implying thereby the ae. convergence of
(4.20). On the other hand, because ¢ € = is rational, inf{ |- f| : fe2rnZ“\0,
¢ p#0} >0, and hence condition (c) is satisfied by all small enough w.
This proves that there is w that satisfies all the above conditions.

The rationality of = implies that for any fixed ¢ € Z the range of the map

rZ\0)s froe 0P ]
is finite, and, because of the condition (a), this range does not contain 0.

Condition (a) also implies that [\e ' dr+0, for all {¢eZ. Thus, we
obtain from condition (c¢) the estimate
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1

o~ N e*—ii»((«»-klﬂ_l
Foospi— 1 |[eveal 11 [t
Mo & ;g),, L jel!’;lul,ﬂ S (w+p)

>const [] 1&-81°" (4.21)

SeKguly
Condition (b) then implies the desired result. ||

4.3. Proofs of Theorems 3.4 and 3.7

The positive statement in Theorem 3.4, 1e., that the approximation order
provided by M _ ; (to functions in V, ..z, = W55} is at least k'(Z), follows
from Theorem 2.6 when combined with Lemma 3.11 and Lemma 3.12.

Indeed, we only need to verify that the requirement M,e L, (needed for
the application of Lemma 3.12) holds. That was proved in Theorem 3.13,
but, as matter of fact, also follows directly from the fact that Mye L,.

The negative statement of Theorem 3.4 will follow from Theorem 3.7.
Indeed, Theorem 3.7 provides k'(Z) as an upper bound on the approxima-
tion order (and in the strongest possible sense).

Therefore, only Theorem 3.7 requires a proof.

For that proof, we need to borrow some of the general tools and resuits
developed in [ BDR1]. We remark that the definition of the PSI space S{(¢)
in [BDR1] differs from the one given here: it is defined there as the
L., -closure of the algebraic span of the shifts of ¢. However, as Theorem
2.13 of [ BDR1] asserts, S(¢) L, of the present paper is dense in S(¢) of
[ BDR11], hence the two spaces share the same approximation orders, and
to the same functions.

We first define for every 1 >0

Ny=M,xM,(—).
Note that
N/l = IM/1| 2'
Because of the rank assumption (3.2), M, € L,, and therefore N, {which is
clearly compactly supported) is continuous, as any convolution product of

two L,-functions is. We make a substantial use of the symbol ZV,, of N,
defined as

NN,,:: Y Nyfaye .
d

x e Je

A standard application of Poisson’s summation formula shows that

No= 5 Nyi-+p= S 1M +p>

fle2n ¢ Ben7d

640 81:1-5
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Thus, we see that IV;, is a non-negative trigonometric polynomial, and,

further, IV;,(}’) =0 only if ]/V:(y) =0.
The L,-approximation orders provided by M are determined [ BDR1],
by the behaviour around the origin of the functions

Ay=(L=N,JN)2  h>0 (4.22)

(here, 0/0 is defined as zero, but in any case, ]’\7,, as a trigonometric
polynomial, vanishes only on a null-set). Note that A, is non-negative
and bounded by l. The precise result that we need here follows from
Theorem 2.20 and Corollary 3.10 of [ BDR1], and reads as follows:

Result 4.23. Let fe W4. Let {¢,}, be a subset of L,. Then

dist,( £, 3,(S($,)) = o(h*) (4.24)
only if
h—4? ”Ahahf”Lg(B] = O(hk),

on some origin-neighborhood B.

We next attempt to replace A, in this result by simpler expressions. It is
clear that we might replace 4, by (N, —N,)"2 in case the ratio

(N, =N =,
1, =N,

is bounded around the origin by A-independent positive constants. For this

we need the following lemma, in which we make use of the fact that every

N, and in particular N, is supported in the symmetric region Z- ,, _z =

Z.— Z- (which follows from the fact that M(—-)=M _z ;; cf (3.3) for

the definition of Z ).

LEMMA 425. N,——5 N, uniformly and hence IV;, — ﬁo in any
p-norm, 1 <p < oo,

Proof. The first claim easily follows from the distributional definition of
box splines (cf., e.g., Definition 2.1 in [R1]; more specifically, one can
apply to N,— N, the argument used in the proof of Lemma 5.1 in [DR]).
The second claim follows from the first, since all N, are supported in the
same compact domain Z_—Z_. |
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Thanks to Lemma 4.25, we know that {]v,,} » are uniformly bounded
around the origin, hence may replace {4,}, in Result 4.23 by

)

—~ ——~ 1
(N/,”Nh)l/z:( ¥ 'M/,(“"/B),z) .

Be2n79\0

Thus, if, for some fe W’;, dist,( £, 6,(S(¢,))) = o(h*), then we must have,
for every fe2rnZ4\0,

h=42 M-+ B) 0, f )| 1y 5y = 0(HY),
which implies by scaling that
IMy(h-+B) F1l -1y = ol HF). (4.26)

Let fe2nZ“\0 be chosen with # K,=k. Since feL,, it is supported on
a set of positive measure, and therefore, for sufficiently small ¢, the set

A, ={weR’: |, — i w|>¢e Ve 5}

has a positive measure intersection with supp f We fix §uch g, and we let
2 be any bounded measurable subset of 4, for which [/, >0.
A straighforward computation shows that, for any #e R*and £ e E\K,,(E),

1 I

[ et o ey [ dr 0, (4.27)

0 0

uniformly. Further, for e K, we get that

Ae—i-0
¢-p

with the convergence being uniform on compact sets, hence on 2. Thus, for
small enough A,

h—l

1
J o AE—iE- (hB+ N1 g
0

o ‘>const>0, Ve d,,

inf{h‘l

{
j e'“f""‘:""”*””’dt) 1 0eQ, h<ho}>0, VéeK,.
0

This together with (4.27) implies, with
r,=1Inf{ |M, (h6 + B)] : 6 Q},

that for small enough 4,

hikrhzhﬂk lnf{

ol
J e IS b+ P dt' ‘fe Q} > const > 0.
0

{1

e



64 AMOS RON

Thus, by (4.26),

o(h*) = M- +/f).fj‘1,;(:z) = H.f“l,g(!)) 1, > const Hf“L;(.Q) h*,

a contradiction to the fact that | f]| L 0.
This completes the proof of Theorem 3.7, and thereby the proof of

Theorem 3.4.

4.4. Proof of Theorem 3.17

The proof invokes Theorem 2.9 for the choice ¢, := M,. Thus, we need
to verify that for an integer r <k (with k :=4k'(Z)), the sequences

mt (2R ZN0Y3 o B U+ 1) A Mo+ Py e R <hg

lie in /(27 Z“\0) and are bounded there.
For that, we first invoke Proposition 4.17 to conclude that

my  (py<const|B]" ] 1&-pI "

seK,ul,

Therefore, by Proposition 4.18, the uniform boundedness of {m; ,}, in

1,(2n7\0) is implied by the condition |-| My e L,. For p= o (ie. g=1)
this latter condition is assimed in the present theorem. We prove here the
validity of the condition for ¢ > 1.

We first observe that the condition |-|" M, € L, is equivalent to the state-
ment: “for each homogeneous polynomial P of degree r, (P(D) M)~ e L,.”
Here, r <A'(Z)— 1 <k(Z)— 1 (ct. the proof of Corollary 3.8). On the other
hand, it is known [BH] that for any polynomial P of degree <k(Z),
P(D) M, can be written as a finite sum

SoeeMy(-—ay) (4.28)
X

where each X in the above sum is a submatrix of = of full rank d, where
¢y are some coefficients, a, e RY, and M,= M, , is the polynomial box
spline defined by X. Since each X above satisfies rank X = d, then as estab-
lished in the proof of Theorem 3.13, M y e L _ for every ¢ > |. Therefore, the
Fourier transform of the sum in (4.28) is in L, namely, (P(D)M,) e L .

Consequently, |-["MyeL,. 1

q*
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